
PIE-NeRF�: Physics-based Interactive Elastodynamics with NeRF

Supplementary Material

A. Weight derivatives

The displacement field of with Q-GMLS interpola-
tion is u(x) = J(x)q(i.e., Eq (9), where J =
[N1I, N

1
1 I, N

2
1 I, ..., N

11
1 I, ...] ∈ R3×30n. The Jacobian and

Hessian matrices of J, ∇J⊤
k and ∇2J⊤

k , are required in IP
integration and IP ray warping.

The computation of derivatives boils down to the com-
putation of the Jacobian and Hessian matrices of Q-GMLS
weighting functions Ni, N

j
i and N jk

i . Recall our weighting
functions:

Ni(x) = p⊤(x)G−1(x)p(xi)w(x− xi),

N j
i (x) = p⊤(x)G−1(x)p,j(xi)w(x− xi),

N jk
i (x) = p⊤(x)G−1(x)p,jk(xi)w(x− xi),

where p(x) = [1, x, y, z, x2, xy, xz, y2, yz, z2]⊤ is the Q-
GMLS polynomial basis, and p,j , p,jk are its first- and
second-order derivative respectively, which are trivial to
compute. The notations can be simplified as:

Ni(x) = S(x)p(xi),

N j
i (x) = S(x)p,j(xi),

N jk
i (x) = S(x)p,jk(xi),

(1)

for S(x) = w(x−xi)p(x)G
−1(x). Hence, once we get the

Jacobian and Hessian of S(x), we can easily compute ∇J
and ∇2J, since xi does not depend on x. In our implement,
the kernel function is w(x−xi) is w(x−xi) = (1−∥d∥2)3,
whose derivatives are:

∇w(x) = −6(1− x⊤x)2x,

∇2w(x) = 6(1− x⊤x)(4xx⊤ − (1− x⊤x)I).
(2)

To compute the derivatives of G(x)−1, we first derive the
derivatives of G(x) as:

∇G(x) =

n∑
i=1

[p(xi)p
⊤(xi) +

∑
j

p,j(xi)p
⊤
,j(xi)

+
∑
j,k

p,jk(xi)p
⊤
,jk(xi)]⊗∇w(x− xi),

∇2G(x) =

n∑
i=1

[p(xi)p
⊤(xi) +

∑
j

p,j(xi)p
⊤
,j(xi)

+
∑
j,k

p,jk(xi)p
⊤
,jk(xi)]⊗∇2w(x− xi).

(3)

∇G(x)−1 and ∇2G(x)−1 can then be computed as:

G(x)−1
,j = −G(x)−1G,j(x)G(x)−1,

G(x)−1
,jk = G(x)−1G,k(x)G(x)−1G,j(x)G(x)−1

+G(x)−1G,j(x)G(x)−1G,k(x)G(x)−1

−G(x)−1G,jk(x)G(x)−1.

(4)

Putting together we have:

S,j(x) = w,j(x− xi)G
−1(x)p(x)

+ w(x− xi)G
−1(x)p,j(x)

+ w(x− xi)G
−1
,j (x)p(x),

S,jk(x) = w,jk(x− xi)G
−1(x)p(x)

+ w,j(x− xi)G
−1
,k (x)p(x)

+ w,j(x− xi)G
−1(x)p,k(x)

+ w,k(x− xi)G
−1(x)p,j(x)

+ w(x− xi)G
−1
,k (x)p,j(x)

+ w(x− xi)G
−1(x)p,jk(x)

+ w,k(x− xi)G
−1
,j (x)p(x)

+ w(x− xi)G
−1
,jk(x)p(x)

+ w(x− xi)G
−1
,j (x)p,k(x).

(5)

B. Energy integration
B.1. Potential energy

We assume that each IP is a small elastic cuboid Ωk. The
elastic potential energy is computed as:

Uk =

∫
Ωk

Ψ(F(h))dV

=

∫ h1
2

−h1
2

∫ h2
2

−h2
2

∫ h3
2

−h3
2

Ψ

(
F(

3∑
i=1

xici)

)
dx1dx2dx3. (6)

We give the derivation for two specific energies namely
ARAP and Neo-Hookean. For simplicity, we omit the nota-
tions of dx1dx2dx3. Also note that:∫

Ωk

xixjcic
⊤
j = 0,∀i ̸= j.

ARAP elasticity. The ARAP energy density is

Ψ(F) = ||F−R||2. (7)

With first-order approximate the deformation gradient in-
side the cuboid, the integrated potential is:

Uk =

∫
Ωk

||F+∇F

3∑
i=1

xici −R||2 =

V

12
tr
(
(F−R)(F−R)⊤

)
+

V

12

3∑
i=1

h2
i ||∇F · ci||2 . (8)

Here, ∇F can be obtained as:

∇F =

n∑
j=1

uj ⊗∇2Nj , (9)

or using generalized coordinates:

∇F = q · ∇2J⊤. (10)

Neo-Hookean elasticity. The Neo-Hookean energy density
is:

Ψ(F) =
µ

2

(
tr (FF)⊤ − 3

)
− µ log J +

λ

2
log2 J, (11)

where J = det(F). The first term tr(FF⊤) is integrated as:

∫
Ωk

tr

(
(F+∇F

3∑
i=1

xici)(F+∇F

3∑
i=1

xici)
⊤

)

= V tr(FF⊤) +
V

12

3∑
i=1

h2
i ||∇F · ci||2 . (12)

For the two log terms, we integrate based on the first-order
approximation log J(x) = log J + ∇J

J ·∆x at the center of
the cuboid. The second term is:∫

Ωk

log J +
∇J

J
·∆x = V log J, (13)

and the third term is:∫
Ωk

log2 J + 2 log J
∇J

J
·∆x+

1

J2
∇J⊤∆x∆x⊤∇J

= V log2 J +
V

12J2
∇J⊤ C∇J, (14)

where C is the covariance matrix.
We also need to derive ∇J . Let F = [f1|f2|f3]. The

determinant of F can thus be calculated as J = det(F) =
f1 × f2 · f3. Using the chain rule, we get

∇J =
∂J

∂F
: ∇F, (15)

where ∂J
∂F = [f2 × f3 |f3 × f1| f1 × f2]. Finally, we

can assemble the potential energy of Neo-Hookean using
Eqs. (12), (13) and (14).

B.2. Derivatives of potential energy

To obtain the generalized energy gradient (fint) and Hes-
sian (∂fint

∂q), we focus on Ψa = V
12

∑3
i=1 h

2
i ||∇F · ci||2

and Ψb =
V

12J2∇J⊤ C∇J .
Re-write Ψa as:

Ψa =
V

12

∑
i1

∑
i2

u⊤
i1ui2 tr

(
∇2Ni1∇2Ni2C

)
, (16)

where ui is a vector of q’s 3i-th row to (3i + 2)-th row,
NiI is a matrix consist of the 3i-th to (3i + 2)-th columns
of J. As Ψa is quadratic w.r.t. u, we can directly write the
stiffness matrix block of IP e as:

Ke
a,i1,i2 =

V

6
tr
(
∇2Ni1∇2Ni2C

)
I. (17)

We assemble blocks of all the IPs to get the system stiffness
matrix Ka of Ψa. fint,a is then computed as fint,a = Ka ·q.

Ψb contains many non-linear terms, whose derivatives
are more involved. We use the chain rule to calculate fint,b
and Hessian Kb. To assemble these terms, we need ∂J

∂q ,
∂2J
∂q2 , ∂∇J

∂q and ∂2∇J
∂q2 , which are computed as:

∂J

∂q
=

∂J

∂F

∂F

∂q
,

∂2J

∂q2
=

∂F

∂q

⊤
:
∂2J

∂F2
:
∂F

∂q
,

∂F

∂q
= ∇J.

(18)

Here, ∂J
∂F and ∂2J

∂F2 can be derived as in any J-based hy-
perelastic energy models. Note that J should not be con-
fused with the determinant J . In the following, we denote
f j = ∂f

∂qj
as the partial differentiation of f w.r.t. j-th row of

q to avoid high-order tensor notations:

Jj
,i = f j1,i × f2 · f3 + f j1 × f2,i · f3 + f j1 × f2 · f3,i

+ f1,i × f j2 · f3 + f1 × f j2,i · f3 + f1 × f j2 · f3,i
+ f1,i × f2 · f j3 + f1 × f2,i · f j3 + f1 × f2 · f j3,i. (19)

Jjk
,i = f j1,i × fk2 · f3 + f j1 × fk2,i · f3 + f j1 × fk2 · f3,i

+ f j1,i × f2 · fk3 + f j1 × f2,i · fk3 + f j1 × f2 · fk3,i
+ fk1,i × f j2 · f3 + fk1 × f j2,i · f3 + fk1 × f j2 · f3,i
+ f1,i × f j2 · fk3 + f1 × f j2,i · f

k
3 + f1 × f j2 · fk3,i

+ fk1,i × f2 · f j3 + fk1 × f2,i · f j3 + fk1 × f2 · f j3,i
+ f1,i × fk2 · f j3 + f1 × fk2,i · f

j
3 + f1 × fk2 · f j3,i. (20)

Figure 1. Multiview dynamics: We show more results using PIE-NerF. The left shadowed column gives the input NGP-NeRF training
data i.e., static views from different angles. On the right, we show three dynamic scenes, rendered from three different camera poses.

Figure 2. Locking: Linear MLS easily yields locking artifact (left)
while Q-GMLS used in PIE-NeRF produces plausible results with
the same number of DOFs (right).

With these components, the Jacobian and Hessian of Ψb can

be assembled as:

∂Ψb

∂q
= − V

6J3
∇J⊤C∇J

∂J

∂q
+

V

6J2
∇J⊤C

∂∇J

∂q
, (21)

and

∂2Ψb

∂q2
=

V

2J4
∇J⊤C∇J

∂J

∂q
⊗ ∂J

∂q

− 2V

3J3
(∇J⊤C

∂∇J

∂q
)⊗ ∂J

∂q
+

V

6J2

∂∇J

∂q

⊤
C
∂∇J

∂q
.

(22)

C. Linear locking
Linear locking refers to the situation where deformation ele-
ments exhibit smaller displacements and appear stiffer than

Deforming
NeRFGT Ours

C
ha

ir
C

at
To

w
er

sq
ua

sh
sq

ua
sh

sh
ea

r
sq

ua
sh

sh
ea

r
sh

ea
r

Figure 3. Comparison with Deforming-NeRF: We conducted
shearing and squashing deformations on various models, with the
ground truth generated by direct mesh vertex transformations.

Deformation Shear Squash

Metrics MSE↓ PSNR↑ MSE↓ PSNR↑
Chair DN* 0.0096 21.9787 0.0076 23.1212

Ours 0.0022 28.8971 0.0012 31.8755
Cat DN 0.0041 26.0174 0.0025 28.3460

Ours 0.0019 29.5765 0.0012 31.7907
Tower DN 0.0066 23.7911 0.0120 20.9451

Ours 0.0027 27.9968 0.0037 26.4454

Table 1. Quantitative benchmark of Fig. 3: Compared to de-
forming NeRF (*DN in the table), our method consistently demon-
strates better performance – lower MSE values and higher PSNR
scores across all cases.

they actually are. This is due to the limited capacity of lin-
ear deformation models to accurately represent bending and
shearing. When simulating codimensional shapes like rods
and shells, linear GMLS tends to yield locking artifacts. As
shown in Fig. 2, linear GMLS cannot generate correct bend-
ing behavior when the cloth collides with the sphere. The
cloth acts like a stiff plane.

D. More results

Fig. 1 reports three additional tests of PIE-NeRF including
collision, thin-shell elasticity, and stiff materials. The re-
sulting novel motions of the scene from different views are

shown in the figure. In the first example, the cars move un-
der gravity and an initial velocity. They then collide with
each other. In the second case, we fix the top corners of a
piece of NeRF cloth, which drops on a wooden ball under
gravity. In this example, the quadratic interpolation used in
Q-GMLS effectively captures the nonlinear cloth dynamics
while locking will occur if one chooses to use linear MLS
with the same number of simulation DOFs. In the last case,
we apply forces to the shovel of the Lego excavator, which
has a relatively stiffer material (5× stiffer than other exam-
ples), resulting in interesting and novel dynamics.

We benchmark our method against Deforming-NeRF[2]
for shear and squash deformation. Given a known defor-
mation gradient field u(x), the ground truth is generated by
directly applying it to original mesh vertex positions and
rendered via BlenderNeRF [1]. Deforming-NeRF uses u to
modify its cage mesh to drive the object’s deformation. In
our method, we apply u on IPs and render the deformed
scene using quadratic ray warping. The qualitative results
are shown in Fig. 3. The quantitative results are listed in
Table 1.

References
[1] Maxime Raafat. BlenderNeRF, May 2023. 4
[2] Tianhan Xu and Tatsuya Harada. Deforming radiance fields

with cages. In European Conference on Computer Vision,
pages 159–175. Springer, 2022. 4

	. Weight derivatives
	. Energy integration
	. Potential energy
	. Derivatives of potential energy

	. Linear locking
	. More results

